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Square and Rectangular Waveguides

with Rounded Corners

PAUL LAGASSE AND JEAN VAN BLADEL, SENIOR MEMBER, IEEE

Abstract—Eigenfunctions, eigenvalues, and attenuation con-

stants in waveguides are determined for the square with rounded

corners, and for the cigar-shaped rectangle with rounded ends.

These cross sections allow, by continuous variation of a parameter,

the investigation of the deformation of the modes and attenuation

curves of a circular waveguide. Particular attention is given to the

HiH mode and its remarkable attenuation curve.

INTRODUCTION

T HE INTERESTING attenuation properties of

the HOI mode in a circular waveguide have been

known for several years [1], [2]. Whereas most

waveguide modes have an attenuation that first de-

creases with frequency, reaches a minimum and there-

after increases monotonically, the Ifol mode possesses

an attenuation that monotonically decreases with in-

creasing frequency. It therefore is tempting to operate

the waveguide at very high frequencies in order to

achieve low losses. Plans exist to transmit a 50–100-

GHz communication band down a copper circular

waveguide of 5-cm diameter. In that band the fre-

quency is from 7 to 14 times the cutoff frequency of the

HOI mode, with the result that hundreds of modes can

be propagated. Special precautions are therefore neces-

sary (e.g., the use of mode filters) to avoid propagation

of these extraneous power-dissipating modes. Propaga-

tion in the HoI mode has also been considered for very-

high-power transmission. Calculations show that an

evacuated copper pipe of 2-m diameter would be able to

transmit some 20 GW at 3 GHz without breakdown, at

the cost of only 1 -dB attenuation per 500 km, It is

against this background that we have decided to study

the cross sections shown in Fig. 1. In Fig. 1 (a), con-

tinuous variation of the rounding-off coefficient c/a

.permits the smooth transition from the circular to the

square cross section. In Fig. 1 (b), variation of the aspect

ratio b/a carries one from a circular to a rectangular

cross section with rounded sides. Our analysis has a

threefold purpose, as follows.

1) To investigate what happens to the HM mode as

the circular shape is distorted, and, in particular,

to follow the change that occurs in the attenua-
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Fig. 1, Cross sections under study.

tion curve. It is expected that the curve will show

a particularly flat plateau for some value of c/a

or b/a. In the frequency band that corresponds to

that plateau, amplitude distortion is low (although

phase distortion will still be important).

2) To trace the effects of an imperfection in the circu-

lar shape. The first effect is a slight change in the

attenuation curve. The second effect is the separa-

tion of the cutoff frequencies of the Ha and -G

modes, which are degenerate for the circular cross

section. Degeneracy means that both modes have

the same phase velocity. It makes the spillover of

energy in the desired Hol mode to the undesired Ell

mode particularly easy. A slight change in the cross

section will remove the degeneracy i~nd spread the

two cutoff frequencies apart. A typical method for

achieving this result is to line the circular wave-

guide with a thin layer of dielectric. Another

method would be to use a slightly elliptical cross

section, but this solution is mechanically less

desirable. The cross sections of Fig. 1 represent

a mechanically acceptable alternative.

3) To facilitate the design of progressive tapers

from a rectangular to a circular waveguide [3].

For such a purpose, field structure and cutoff

frequency of each intermediate cross section must

be known, particularly as broad-banding re-

quires the cutoff frequency to be constant in each

cross section. The transition properties of the low-

est mode have been investigated previously by

means of “superelliptic” cross sections [4]. It is

our purpose to give similar data for the transition

properties of the higher modes—-in lparticu]ar, the

HOI mode.
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FORMULAS FOR THE MODE LOSSES

/J. Derivation of an E Afode

An E mode is derived from a Dirichlet eigenfunction

& satisfying

v’+. + km%j = o (1)

where & = O on the contour C of the cross section S.

With walls having a permeability p~ and a high con-

ductivity u, the fields decrease exponentially

to the law e-a’, in which [5]

Here Wc is the cutoff angular frequency k~c of

according

(2)

the mode,

and n is the normal to the contour. Let a be a charac-

teristic dimension of the cross section. A universal curve,

valid for all E modes in an arbitrary waveguide, can be

drawn for aa. The formula, derived from

written as

_ (ka)’
~a = d M.

8koa(k2a2 – kc2a2)

(2), can be

(3)

Here aa is the number of nepers per a, k is the wave-

number, kc = k., its value at cutoff, and ko ‘uv’Po,/eo

= alla is the wavenumber corresponding to the fre-

quency at which ~~o = u. For copper, this frequency is

1.041018 Hz, and ko=2,28 1010 m–l. Factor 1-l is dimen-

sionless and is given by

M=

(@m 2
a S( )— dl

c thz

kcz
Ss

&2dS
s

(4)

A curve for aa is shown in Fig. 2. The minimum is

reached for k = v’~k,.

B. Derivation of an H iVode

An H mode is derived from a Neumann eigenfunc-

tion +,, satisfying

8+.
—= Oon C. (5)

EM3

Here, again, universal curves

from the formula [5]

d

k2a2 I kc?ay

(Y(! =

[

—Ik;k=— P +

can be drawn starting

k~a’k~~ ‘]” ‘6)
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Fig. 2. Universal attenuation curve for the E modes.
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Fig. 3. Universal attenuation curves for the H modes.

In this case there are two dimensionless ratios:

8$% 2
a H )—dl

c (31
P= .

kc2
Sf

#n2dS
s

sa +n’dl

Q= c .

Ss

(7)

#n2dS
s

Equation (6) shows that the sha@e of the attenuation

curves is determined solely by the parameter P/Q. The

condition P = O corresponds to the monotonically de-

creasing attenuation of mode HOI. The value P/Q= 0.1
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Fig. 4. Relevant to the method of finite elements.

TABLE I

kca P Q jj$’ dS

Exact 3.832 0 2 0.5096
Computed 3.845 3X1 O-5 2.009 0.5081

is about what is needed to obtain a maximally flat

curve. Higher values of P/Q give progressively sharper

minima (Fig. 3).

THE METHOD OF FINITE ELEMENTS

The functional

is stationary about the Neumann eigenfunctions of the

cross section. With the restriction ~ = O, it becomes

stationary about the Dirichlet eigenfunctions. To deter-

mine these eigenfunctions, parameter-laden functions

are selected according to the principles of the method

of finite elements [6], [7]. These functions ace intro-

duced in (8), and the parameters are subsequently

optimized. Higher order triangular elements were used

[8]. Symmetry considerations allowed the computa-

tions to be restricted to one quarter of the waveguide

cross section. A typical triangular subdivision, as used

for the cigar-shaped cross section, is shown in Fig. 4.

Within each triangle, the function ~ is taken to a third-

degree polynomial. In the case of Fig. 4 the procedure

yields a 133X 133 symmetric matrix, the eigenvectors

and eigenvalues of which are subsequently computed.

The variational parameters are the values of@ at certain

well-defined points of the triangle. The computation of

the different integrals appearing in (4) and (7) has been

performed by expressing the third-degree polynomials

in terms of the area coordinates Ll, L2, La indicated in

Fig. 4 [6]. In this coordinate system, the various

derivatives appearing in the integrals are polynomials

in Ll, L.2, Lz, which can easily be evaluated with a com-

puter. The accuracy of the method depends not only on

the built-in error of the finite element technique, but

also on the error introduced by approximating the

circles by straight-line segments. For a rectangular

cross section computed with a triangular subdivision

of the kind used throughout this paper, the error on the

kca
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Fig. 5. Cutoff frequency for the square

with rounded corners.

eigenvalues is less than 0.1 percent for the five lowest

modes. Using the same triangular net as in the circular

part of Fig. 4, results were computed for the I101 mode

of the circular waveguide and compared with the known

exact value (Table I).

As all guides considered in this paper were computed

using more elements, and since the curved parts were

only a fraction of the complete contour, the errors

obtained for the circular guide should give an upper

bound to the error of the five lowest modes of the cross

sections under study.

THE SQUARE–CIRCLE TRANSITION

Computer data for c/a = 0.3, 0.5, and 0.7 are pre-

sented in Figs. 5 through 10 for some of the lowest

modes. Fig. 5 gives the cutoff frequency, or rather the

dimensionless parameter kca = 2r(a/c)jc, as a function

of c/a. Notice that the rank of the displayed modes

remains unchanged throughout the transition process.

Removal of degeneracies through small deformations

is evident from the figure. Mode 5 is particularly inter-

esting as it stems from the HOI mode in the circular

waveguide. The evolution of the curves of constant t

for this mode is shown in Fig. 6, and similar data

appear in Fig, 7 for other modes. The eigenfunction

has been normalized to reach a maximum equal to 1.

Under each cross section appears the corresponding

value of JJ02 dS or ~~~’ dS. Although most microwave

engineers can imagine how the lines of constant @ or #

are changing from rectangular to square, the plotted

curves provide interesting quantitative data. For an

E mode the plotted function ~ is proportional to E., and

grad @ (which can be read OR the figure) is proportions
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Fig. 6. Lines of constant $ for mode 5 and cja = 1, 0.7, 0.5, 0.3, and O.
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Fig. 7. Lines of constant o or ~. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4. (e) Mode 6. c/a= 1, 0.5, and O.
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to the transverse electric field Ii&. The magnetic field

H,, is Et, rotated by 90°. For an H mode, the plotted

function # is Hz, and Ht, is grad $, while Et, is 11~,

rotated by 90°. Knowledge of the fields in magnitude

and direction allows proper design of launchers and

mode filters.

The analytical expressions for the various modes in

square and circular waveguides are well known and will

not be reproduced here [5]. Explicit calculation of &f

shows that this parameter has the value 2, and that

P/Q stays in the 0–0.5 range for the modes considered.

It is found that the values of M and P/Q vary little

from square to circle. Nothing drastic will therefore

happen with the attenuation curve. The only exception

is the fifth mode, where all values of P/Q between O

1/3 can be obtained by suitable choice of the rounding-

off coefficient c/a (Fig. 8), The maximally flat curve is

achieved for P/Q =0.09, and corresponds to c/a= 0.64.

square hunting-off coetfichnt Va Circle

Fig. 8. Values of P/Q for mode 5.
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Fig. 9. Attenuation-frequency curves. (a) c/a = O (square). (b) c/u = 0.5. (c) c/a = 1 (circle).

i kca
A

4-
50.

*
k
s

40

L:

3-
.

- G2-

% 30
..=
s 2-
,=
~ 20, \.=
s
:= 03 1’

- 10.
1-

0.5

0.7
---[ mode

circle ~ —H mode
%

0245 10 20 30
ka

01 ’15 ‘2.2!4-
circle

Fig. 10. Attenuation curves for mode 5. Fig. 11. Cutoff frequency for cigar-shaped cross section.

A few representative attenuation curves are shown in of the circular mode from which they stem. Notice that

Fig. 9 for the seven lowest modes, and in Fig. 10 for the rank is not conserved. In fact, a picture of more than

fifth mode, which, as usual, deserves special attention. the four lowest modes becomes hopelessly entangled, as

The natural unit for the attenuation is the dimensionless can readily be verified by a glance at the mode chart of

parameter l/#cr&a, where l?~ = 37KL Fig. 10(a) and (c) a rectangular waveguide. Mode 5, for example, has

presents classical results for the attenuation of square become the ninth mode for b/u = 1.5 and the eleventh

and circle. They are included for the sake of comparison mode for b/a =2.25.

with Fig. 10(b), where the effect of the rounded corners Mode patterns are given in Fig. 12 for the six modes

has been included. of interest. The transition to the corresponding modes

THE CIGAR-SHAPED CROSS SECTION
of the rectangular waveguide is displayed. The eigen-

functions of the modes are perhaps appau-ent from the
Computer data for aspect ratios b/a = 1.5 ad 2.25 figure, but here we write them out explicitly for clarity:

are presented in Figs. 11 through 15. The cutoff fre-

quency of the four lowest modes is shown in Fig. 11.
TX ~Y ‘r% ~Y

Cos — > Cos — ) sin — sin —
These modes have been labeled according to the rank a 2b 2a 2b
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Fig. 12.
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Fig. 14. Attenuation-frequency curve for mode 5.
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respectively, for modes 1’, 1“, z, 3’, 3“, and 5. Notice

that we choose to investigate rather small deformations

of the circle for mode 5 (b/a = 1.25 and 1.5) in order

to get a better idea of the influence of mechanical
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Fig. 15. Attenuation-frequency curves for b/a = 1.5.

perturbations. Fig. 13 sho~rs the variation of P/Q for

this mode, and Fig. 14 some relevant attenuation

curves for three values of b/a. Attenuation character-

istics of the other modes are shown in Fig. 1S.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

A. E. Karbowiak, Trunk Waueguide Communication. London,
England: Chapman and Hall, 1965.
E. C. Okress, Microwave Power Engineering, vol. 1. New York:
Academic Press, 1968.
C. C. H. Tang, “On the mode correspondence between circular
and square multimode tapered waveguides, ” IEEE Trans.
Microwave Theory Tech., vol. MTT-15, pp. 314-317, May 1967.
T. Larsen, “Superelliptic broadband transition between rec-
tangular and circular waveguides, “ in 1969 Proc. European Micvo-
wave Conf., pp. 277–280.
N. Marcuvitz, Wuveguide Handbook. New York: McGraw-
Hill, 1951.
0. C. Zienkiewicz with Y. K. Cheung, The Finite Element Method
in Structural and Continuum Mechanics. New York: McGraw-
Hill,, 1968, chs. 10 and 11,
P. Sdvester, “Finite element solution of homogeneous waveguide
problems, ” Alta Freq., vol. 38, pp. 313-317, May 1969; also
presented at the URSI Symp. Electromagnetic Waves, 1969.
—, l(A general high-order finite-element wavegui<ie analysis
program, ” IEEE Trans. ilficrowaue Theory Tech., vol. MTT- 17,
pp. 204-210, Apr. 1969.


