IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-20, NO. 5, MAY 1972 331

Square and Rectangular Waveguides
with Rounded Corners

PAUL LAGASSE anp JEAN VAN BLADEL, SENIOR MEMBER, IEEE

Abstract—Eigenfunctions, eigenvalues, and attenuation con-
stants in waveguides are determined for the square with rounded
corners, and for the cigar-shaped rectangle with rounded ends.
These cross sections allow, by continuous variation of a parameter,
the investigation of the deformation of the modes and attenuation
curves of a circular waveguide. Particular attention is given to the
H,; mode and its remarkable attenuation curve.

INTRODUCTION
THE INTERESTING attenuation properties of

the Hy mode in a circular waveguide have been

known for several years [1], [2]. Whereas most
waveguide modes have an attenuation that first de-
creases with frequency, reaches a minimum and there-
after increases monotonically, the Hy mode possesses
an attenuation that monotonically decreases with in-
creasing frequency. It therefore is tempting to operate
the waveguide at very high frequencies in order to
achieve low losses. Plans exist to transmit a 50-100-
GHz communication band down a copper circular
waveguide of 5-cm diameter. In that band the fre-
quency is from 7 to 14 times the cutoff frequency of the
Hy mode, with the result that hundreds of modes can
be propagated. Special precautions are therefore neces-
sary (e.g., the use of mode filters) to avoid propagation
of these extraneous power-dissipating modes. Propaga-
tion in the Hy mode has also been considered for very-
high-power transmission. Calculations show that an
evacuated copper pipe of 2-m diameter would be able to
transmit some 20 GW at 3 GHz without breakdown, at
the cost of only 1-dB attenuation per 500 km. It is
against this background that we have decided to study
the cross sections shown in Fig. 1. In Fig. 1(a), con-
tinuous variation of the rounding-off coefficient ¢/a
permits the smooth transition from the circular to the
square cross section. In Fig. 1(b), variation of the aspect
ratio b/a carries one from a circular to a rectangular
cross section with rounded sides. Our analysis has a
threefold purpose, as follows.

1) To investigate what happens to the Hy mode as
the circular shape is distorted, and, in particular,
to follow the change that occurs in the attenua-
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Fig. 1.

Cross sections under study.

tion curve. It is expected that the curve will show
a particularly flat plateau for some value of ¢/a
or b/a. In the frequency band that corresponds to
that plateau, amplitude distortion is low (although
phase distortion will still be important).

To trace the effects of an imperfection in the circu-
lar shape. The first effect is a slight change in the
attenuation curve. The second effect is the separa-
tion of the cutoff frequencies of the Hyy and Eyy
modes, which are degenerate for the circular cross
section. Degeneracy means that both modes have
the same phase velocity. It makes the spillover of
energy in the desired Ho mode to the undesired En
mode particularly easy. A slight change in the cross
section will remove the degeneracy and spread the
two cutoff frequencies apart. A typical method for
achieving this result is to line the circular wave-
guide with a thin layer of dielectric. Another
method would be to use a slightly elliptical cross
section, but this solution is mechanically less
desirable. The cross sections of Fig. 1 represent
a mechanically acceptable alternative. ’
To facilitate the design of progressive tapers
from a rectangular to a circular waveguide [3].
For such a purpose, field structure and cutoff
frequency of each intermediate cross section must
be known, particularly as broad-banding re-
quires the cutoff frequency to be constant in each
cross section. The transition properties of the low-
est mode have been investigated previously by
means of “superelliptic” cross sections [4]. It is
our purpose to give similar data for the transition
properties of the higher modes—in particular, the
H01 mode.
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ForMULAS FOR THE MODE 1.OSSES
A. Deriwvation of an E Mode

An E mode is derived from a Dirichlet eigenfunction
¢ satislying

V¢ + Eni¢p = 0 1)
where ¢, =0 on the contour C of the cross section .S.

With walls having a permeability ue and a high con-
ductivity o, the fields decrease exponentially according

to the law e~2#, in which [5]
Abm\ 2
f <i> 1
c\on

a = 4/8a(w2 — we?) kmgff bn2dS |

Here we is the cutoff angular frequency k.,c of the mode,
and # is the normal to the contour. Let @ be a charac-
teristic dimension of the cross section. A universal curve,
valid for all E modes in an arbitrary waveguide, can be
drawn for aa. The formula, derived from (2), can be

written as
ka)?
Y
8koa(k%a® — kc?a?)

Here aa is the number of nepers per a, k is the wave-
number, ke=Ek, its value at cutoff, and ko=0v/uo/e
=g¢R, is the wavenumber corresponding to the fre-
quency at which we;=¢. For copper, this frequency is
1.04 1018 Hz, and £¢=2.28 1019 m—!, Factor M is dimen-
sionless and is given by

S
M= : %)

Fo? f f bn2dS
8

A curve for aa is shown in Fig. 2. The minimum is
reached for k= +/3k,.

w3e

)
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B. Derivation of an H Mode

An H mode is derived from a Neumann eigenfunc-
tion ¥, satisfying

Vi, + kY, = 0

Wn
n

=0 on C. ©)

Here, again, universal curves can be drawn starting
from the formula [5]
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Fig. 3. Universal attenuation curves for the H modes,

In this case there are two dimensionless ratios:

L)

™

Equation (6) shows that the shape of the attenuation
curves is determined solely by the parameter P/Q. The
condition P =0 corresponds to the monotonically de-
creasing attenuation of mode Hy. The value P/Q=0.1
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Fig. 4. Relevant to the method of finite elements.

TABLE I

ke P Q S/ ds
Exact 3.832 0 2 0.5096
Computed 3.845 3X107 2.009 0.5081

is about what is needed to obtain a maximally flat
curve. Higher values of P/Q give progressively sharper
minima (Fig. 3).

TeE METHOD OF FINITE ELEMENTS

The functional

J(¢) = f fs[lgrad¢12— k2¢*]dS (8)

is stationary about the Neumann eigenfunctions of the
cross section. With the restriction ¢ =0, it becomes
stationary about the Dirichlet eigenfunctions. To deter-
mine these eigenfunctions, parameter-laden functions
are selected according to the principles of the method
of finite elements [6], [7]. These functions are intro-
duced in (8), and the parameters are subsequently
optimized. Higher order triangular elements were used
[8]. Symmetry considerations allowed the computa-
tions to be restricted to one quarter of the waveguide
cross section. A typical triangular subdivision, as used
for the cigar-shaped cross section, is shown in Fig. 4.
Within each triangle, the function ¢ is taken to a third-
degree polynomial. In the case of Fig. 4 the procedure
yields a 133X 133 symmetric matrix, the eigenvectors
and eigenvalues of which are subsequently computed.
The variational parameters are the values of ¢ at certain
well-defined points of the triangle. The computation of
the different integrals appearing in (4) and (7) has been
performed by expressing the third-degree polynomials
in terms of the area coordinates L;, Ls, L3 indicated in
Fig. 4 [6]. In this coordinate system, the various
derivatives appearing in the integrals are polynomials
in Ly, Ls, L3, which can easily be evaluated with a com-
puter. The accuracy of the method depends not only on
the built-in error of the finite element technique, but
also on the error introduced by approximating the
circles by straight-line segments. For a rectangular
cross section computed with a triangular subdivision
of the kind used throughout this paper, the error on the
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Fig. 5. Cutoff frequency for the square

with rounded corners.

eigenvalues is less than 0.1 percent for the five lowest
modes. Using the same triangular net as in the circular
part of Fig. 4, results were computed for the {y mode
of the circular waveguide and compared with the known
exact value (Table I).

As all guides considered in this paper were computed
using more elements, and since the curved parts were
only a fraction of the complete contour, the errors
obtained for the circular guide should give an upper
bound to the error of the five lowest modes of the cross
sections under study.

THE SQUARE—CIRCLE TRANSITION

Computer data for ¢/a=0.3, 0.5, and 0.7 are pre-
sented in Figs. 5 through 10 for some of the lowest
modes. Fig. 5 gives the cutoff frequency, or rather the
dimensionless parameter kea =27 (a/c)f¢, as a function
of ¢/a. Notice that the rank of the displayed modes
remains unchanged throughout the transition process.
Removal of degeneracies through small deformations
is evident from the figure. Mode § is particularly inter-
esting as it stems from the Hy mode in the circular
waveguide. The evolution of the curves of constant ¢
for this mode is shown in Fig. 6, and similar data
appear in Fig. 7 for other modes. The eigenfunction
has been normalized to reach a maximum equal to 1.
Under each cross section appears the corresponding
value of [[¢?dS or [fy? dS. Although most microwave
engineers can imagine how the lines of constant ¢ or ¥
are changing from rectangular to square, the plotted
curves provide interesting quantitative data. For an
E mode the plotted function ¢ is proportional to E,, and
grad ¢ (which can be read off the figure) is proportiona
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Fig. 7. Lines of constant ¢ or ¢. (a) Mode 1. (b) Mode 2.
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Fig. 8. Values of P/Q for mode 5.

@ (e)
(c) Mode 3. (d) Mode 4. (¢) Mode 6. c/a =1, 0.5, and 0.

to the transverse electric field Ei. The magnetic field
H, is E,; rotated by 90°. For an H mode, the plotted
function ¢ is H,, and H,, is grad ¢, while E,. is H,
rotated by 90°. Knowledge of the fields in magnitude
and direction allows proper design of launchers and
mode filters.

The analytical expressions for the various modes in
square and circular waveguides are well known and will
not be reproduced here [5]. Explicit calculation of M
shows that this parameter has the value 2, and that
P/Q stays in the 0-0.5 range for the modes considered.
It is found that the values of M and P/Q vary little
from square to circle. Nothing drastic will therefore
happen with the attenuation curve. The only exception
is the fifth mode, where all values of P/(Q between 0
1/3 can be obtained by suitable choice of the rounding-
off coefficient ¢/a (Fig. 8). The maximally flat curve is
achieved for P/Q=0.09, and corresponds to ¢/a =0.64.
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Fig. 10. Attenuation curves for mode 5.

A few representative attenuation curves are shown in
Fig. 9 for the seven lowest modes, and in Fig. 10 for the
fifth mode, which, as usual, deserves special attention.
The natural unit for the attenuation is the dimensionless
parameter 1/+/cRoa, where Ro=377Q. Fig. 10(a) and (c)
presents classical results for the attenuation of square
and circle. They are included for the sake of comparison
with Fig. 10(b), where the effect of the rounded corners
has been included.

THE C1GAR-SHAPED CROSS SECTION

Computer data for aspect ratios b/¢=1.5 and 2.25
are presented in Figs. 11 through 15. The cutoff fre-
quency of the four lowest modes is shown in Fig. 11.
These modes have been labeled according to the rank

ka

(c)

Attenuation-frequency curves. (a) ¢/a=0 (square). (b) ¢/a=0.5. (c) ¢/a=1 (circle).
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Fig. 11. Cutoff frequency for cigar-shaped cross section.

of the circular mode from which they stem. Notice that
rank is not conserved. In fact, a picture of more than
the four lowest modes becomes hopelessly entangled, as
can readily be verified by a glance at the mode chart of
a rectangular waveguide. Mode 5, for example, has
become the ninth mode for 6/a=1.5 and the eleventh
mode for b/a=2.25.

Mode patterns are given in Fig. 12 for the six modes
of interest. The transition to the corresponding modes
of the rectangular waveguide is displayed. The eigen-
functions of the modes are perhaps apparent from the
figure, but here we write them out explicitly for clarity:

T Ty ™ wy

cos —,; Ccos-=, sin— sin —
a 2b 2a 20
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Fig. 12. Lines of constant ¢ or . (a) Mode 1’. (b) Mode 1”. (c) Mode 2. (d) Mode 3".
(e) Mode 3”. b/a=1, 1.5, and 2.25. (f) Mode 5 for b/a =1, 1.25, and 1.5.
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Fig. 14. Attenuation-frequency curve for mode 5.
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respectively, for modes 1/, 1”7, 2, 3/, 3/, and 5. Notice
that we choose to investigate rather small deformations

of the circle for mode 5 (b/a=1.25 and 1.5) in order
to get a better idea of the influence of mechanical
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Fig. 15. Attenuation-frequency curves for b/¢ =1.5.

perturbations. Fig. 13 shows the variation of P/Q for
this mode, and Fig. 14 some relevant attenuation
curves for three values of b/a. Attenuation character-
istics of the other modes are shown in Fig. 15.
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